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Abstract

An appropriate strain energy density for an isotropic hyperelastic Hookean material is proposed for finite strain

from which a constitutive relationship is derived and applied to problems involving beam theory approximations. The

physical Lagrangian stress normal to the surfaces of a element in the deformed state is a function of the normal

component of stretch while the shear is a function of the shear component of stretch. This paper attempts to make a

contribution to the controversy about who is correct, Engesser or Haringx with regard to the buckling formula for a

linear elastic straight prismatic column with Timoshenko beam-type shear deformations. The derived buckling formula

for a straight prismatic column including shear and axial deformations agrees with Haringx�s formula. Elastica-type
equations are also derived for a three-dimensional Timoshenko beam with warping excluded. When the formulation is

applied to the problem of pure torsion of a cylinder no second-order axial shortening associated with the Wagner effect

is predicted which differs from conventional beam theory. When warping is included, axial shortening is predicted but

the formula differs from conventional beam theory.
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1. Introduction

The Euler buckling load for a straight prismatic column was first modified by Engesser (1889, 1891) to

include the effects of shear deformations. The solution to this problem is used for the design of helical

springs, elastometric bearings, sandwich plates, built-up and laced columns, and composite materials (see

Bazant, 1971, 2003; Kardomateas and Dancila, 1997; Bazant and Cedolin, 1991; Gjelsvik, 1991; Simo et al.,

1984a; Simo and Kelly, 1984; Timoshenko and Gere, 1963). Engesser�s solution predicts a limit on the

buckling load equal to the shear stiffness as the slenderness ratio becomes very small. This was not con-

firmed by experiments on very short highly compressed helical springs which showed that very short springs
do not buckle. Haringx (1942) developed an alternate buckling formula which predicted an infinite buckling

load as the slenderness approached zero. His formula agreed well with experimental results for short
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springs. Recently Haringx�s buckling formula was also shown to provide better predictions for sandwich

columns (see Bazant, 2003).

There have been several authors who have discussed the merits of the two approaches (see Timoshenko

and Gere, 1963; Bazant, 1971; Zielger, 1982; Reissner, 1972, 1982; Bazant and Cedolin, 1991; Gjelsvik,
1991). The arguments for and against were debated in two papers in 1982, one by Zielger (1982) who

supported Engesser approach and Reissner (1982) who supported Haringx�s approach. Both approaches

used the constitutive law Q ¼ GAu where Q is the shear force, G is the shear modulus, A is the cross-

sectional area and u is the shear angle. Both, however, assumed a different orientation for Q and the axial

force N on the cross-section, as shown in Fig. 1. Engesser assumed the axial force to be tangential to

the centroidal axis of the beam and the shear force to be perpendicular to this, while Reissner assumed that

the axial force was normal to the cross-section and the shear force perpendicular and within the plane of the

cross-section. The two approaches yield different formulas for the buckling load. A third approach which is
based on assuming a Hookean constitutive law between the Green�s strain tensor and the second Piola–

Kirchhoff stress tensor yields results which are identical to Engesser�s. In this third approach, the actions/

stresses consisted of an axial force which is tangential to the centroidal axis of the beam and a shear force

which lies within the plane of the cross-section as shown in Fig. 1. Again Q ¼ GAu is assumed.

Bazant (1971, 2003) considered several finite strain formulations each of which assumed a Hookean

stress–strain relationship with identical elastic constants. Each formulation predicted different buckling

loads. Bazant (1971) and Bazant and Cedolin (1991) was able to show that the Engesser formula resulted if

one used a formulation based on the Green�s strain tensor and the second Piola–Kirchhoff stress tensor.
Haringx�s formula resulted if the Doyle–Ericksen strain measure with m ¼ �2 was used. This strain

measure is identified as the contravariant Almansi strain tensor (refer to Ogden, 1997, p. 119). Bazant

(1971, 2003) concluded that all finite strain ‘‘formulations are equivalent because the tangential elastic

moduli of the material cannot be taken the same but rather must have different values in each formulation’’.

One needed, however, to establish a reference Hookean conjugate strain–stress formulation from which all

others could be transformed.

Bazant (1971) and Bazant and Cedolin (1991) also showed that Haringx�s equation could be obtained

from Engesser�s formula if the shear modulus in Engesser�s formula was replaced by G� N=A where N is
Fig. 1. Two-dimensional beam actions.



Fig. 2. Shear equilibrium.
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the applied axial force. A similar conclusion was reached by Simo et al. (1984a) who used a Green�s strain
tensor-second Piola–Kirchhoff stress formulation to study the buckling of a beam flexible in shear. This can

also be seen by examining equilibrium in the direction of the plane of the cross-section as shown in Fig. 2

and assuming small deflections. The three approaches yield the same result if the G used for the Engesser

and Green/Kirchhoff approaches is replaced by G� N=A.
In a previous paper (Attard, 2003), a strain energy density was proposed for finite strain isotropic hy-

perelastic materials. This strain energy density is used to derive constitutive relationships for problems

involving beam theory. The buckling formula for a straight prismatic column including shear and axial

deformations is derived and agrees with Haringx�s formula. Elastica-type equations are derived for a three-

dimensional Timoshenko beam with warping excluded. The example of pure torsion of a cylinder is

examined as the proposed formulation predicts no second-order axial shortening under pure torsion. This

differs from conventional finite strain predictions associated with the Wagner effect. It is further shown that

if one includes warping then under pure torsion axial shortening is predicted.
2. Strain energy density for an isotropic Hookean material

A simple non-negative strain energy density for a compressible isotropic Hookean material is (see

Attard, 2003):
dU ¼ 1
2
GðIk � 3Þ þ 1

2
Kðln JÞ2 � G ln J dV ð1Þ
where the material constants are defined by
G ¼ E
2ð1þ lÞ K ¼ El

ð1þ lÞð1� 2lÞ ð2Þ
with E being the elastic modulus, G the shear modulus, l the Poisson�s ratio and K the Lam�ee constant. The
invariants Ik and J are defined by:
Ik ¼ gijĝg ¼ ðkp1Þ2 þ ðkp2Þ2 þ ðkp3Þ2 ¼ ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2 ð3Þ
ij
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J ¼ ðIIIkÞ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðĝgijÞ
detðgijÞ

s
¼

ffiffiffî
gg

pffiffiffi
g

p ¼ kp1kp2kp3

¼ k1k2k3ð1þ 2 cos /̂/12 cos /̂/13 cos /̂/23 � cos2 /̂/12 � cos2 /̂/13 � cos2 /̂/23Þ
1=2 ð4Þ
where gij is the contravariant metric tensor in the undeformed state, ĝgij is the covariant metric tensor in the
deformed state, kp1, kp2 and kp3 are the principal stretches, k1, k2 and k3 are the stretches when the initial

coordinate system is Cartesian and /̂/ij are the angles between the ith and jth tangent base vectors in the

deformed state. Eq. (1) can be approximated to the order of Oð½J � 1�3Þ as follows.
dU ¼ 1
2
GðIk � 3Þ þ 1

2
Kðln JÞ2 � G ln J dV ¼ 1

2
GðIk � J 2 � 2Þ þ 1

2
ðK þ 2GÞðJ � 1Þ2 þOð½J � 1�3ÞdV ð5Þ
The strain energy density defined in Eq. (5) can also be expressed in the following form:
dU ¼ 1
2
GðIk � J 2 � 2Þ þ 1

2
ðK þ 2GÞðJ � 1Þ2 þOð½J � 1�3ÞdV

¼ 1
2
Gð½k2n1 þ k2s1� þ k22 þ k23 � k2n1½ĝg22ĝg33 � ĝg23ĝg23� � 2Þ þ 1

2
ðK þ 2GÞðkn1½ĝg22ĝg33 � ĝg23ĝg23�

1=2 � 1Þ2

þOð½J � 1�3ÞdV ð6Þ
where J=kn1 ¼ ½ĝg22ĝg33 � ĝg23ĝg23�
1=2

is the ratio of the surface area bound by ĝg2 dh
2 and ĝg3 dh

3 in the deformed

state to the initial state and kn1 ¼ 1=
ffiffiffiffiffiffi
ĝg11

p
and ks1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝg11 � ð1=

ffiffiffiffiffiffi
g11

p
Þ

q
are the normal and tangential

components of the stretch k1, respectively, as shown in Fig. 3. One level of beam theory approximation is to

assume that the beam cross-sectional shape and area remains unchanged during deformation and that the

stress state is essentially uniaxial. If one assumes J=kn1 ¼ 1 then Eq. (6) becomes:
dU ffi 1
2
GðIk � J 2 � 2Þ þ 1

2
ðK þ 2GÞðJ � 1Þ2 þOð½J � 1�3ÞdV

ffi 1
2
Gððks1Þ2 þ k22 þ k23 � 2Þ þ 1

2
ðK þ 2GÞðkn1 � 1Þ2 þOð½kn1 � 1�3ÞdV ð7Þ
Fig. 3. Deformed parallelepiped showing normal and shear stresses on surface bounded by ĝg2dh
2 and ĝg3dh3.
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The second term in Eq. (7) is the strain energy due to extension normal to the deformed surface (in the

direction ĝg1). The material parameter governing this term is K þ 2G and not the elastic modulus E as would

be expected for a uniaxial stress state. This is because restraining the cross-section shape involves the

application of lateral stresses which would not be present under a uniaxial stress state. A further
approximation in beam theory is to replace K þ 2G by E in Eq. (7). To distinguish when this approximation

is made in this paper, K þ 2G will be replaced by E
. Eq. (7) then becomes:
dU ffi 1
2
Gððks1Þ2 þ k22 þ k23 � 2Þ þ 1

2
E
ðkn1 � 1Þ2 þOð½kn1 � 1�3ÞdV ð8Þ
The constitutive law for the physical Lagrangian stresses normal and tangential to the beam cross-section

derived from Eq. (8) are (refer to Attard, 2003):
snormalR ¼ odU
okn1

ffi E
ðkn1 � 1Þ

sshearR ¼ odU
oks1

¼ Gks1

ð9Þ
Note this assumes that k1 or k2 are not functions of kn1. The subscript �R� used in the above notation of

stresses is to indicate that these stresses are in agreement with Reissner�s proposal for beam actions (refer to

Fig. 1b). The shear component is in the direction defined by the vector ĝg1 � ðĝg1=ĝg11Þ ¼ �ðĝg12=ĝg11Þĝg2 �
ðĝg13=ĝg11Þĝg3 (see Attard, 2003).
3. Uniform uniaxial tension/compression

The first example considered here is the analysis of a prismatic bar under uniform axial tension or

compression. The cross-sectional shape is assumed to undergo no lateral strains within the cross-sectional

plane and therefore k2 ¼ 1, k3 ¼ 1 and ĝg23 ¼ 0. Equilibrium will only be satisfied in the longitudinal

direction as the maintenance of the cross-sectional shape implies the presence of lateral stresses to contra

the effects of volume dilation.

The initial axis system is taken as a Cartesian rectangular system. The longitudinal axis of centroids of

the undeformed beam is taken as the x- or 1-axis. The orthogonal axes perpendicular to the x-axis are taken
as the z- or 2-axis and y- or 3-axis. Under uniaxial deformation it is assumed that all points within the cross-

section undergo a uniform longitudinal displacement uðxÞ. Second and higher derivatives of uðxÞ are

assumed to vanish. All displacement functions in this paper are taken as Lagrangian. The position vector bRR
for a particle that initially had coordinates x, y and z will be:
bRR ¼ ðxþ uðxÞÞi1 þ ðzÞi2 þ ðyÞi3 ð10Þ
The tangent and reciprocal base vectors in the deformed state will be therefore be
ĝg1 ¼
obRR
ox

¼ ð1þ u;xÞi1 ĝg2 ¼
obRR
oz

¼ i2 ĝg3 ¼
obRR
oy

¼ i3

ĝg1 ¼ 1

1þ u;x
i1 ĝg2 ¼ i2 ĝg3 ¼ i3

ð11Þ
where u;x is the derivative of uðxÞ with respect to x. The invariants based on Eqs. (3), (4) and (11) are

therefore:
Ik ¼ ð1þ u;xÞ2 J ¼ ð1þ u;xÞ ð12Þ
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and the strain energy density is given by:
dU ffi 1

2
ðK þ 2GÞðu;xÞ2 þOð½u;x�3ÞdV ffi 1

2
E
Aðu;xÞ2 dx ð13Þ
where A is the cross-sectional area. It is instructive to look at the stresses which are compatible with

the assumed displacements. The first Piola–Kirchhoff stress tensor derived using Eq. (5) is (see Attard,

2003):
tij ffi Gðgir½dj
r þ ujjr� � ĝgi � gjÞ þ Kĝgi � gjðJ � 1Þ þOðJ � 1Þ2 ð14Þ
where dj
r is the kronecker delta and ujjr is the covariant derivative of uj. The physical Lagrangian stresses to

the order of Oð½u;x�2Þ are therefore:

t11 ffi ð2Gþ KÞu;x t22 ffi Ku;x t33 ffi Ku;x t12 ¼ t13 ¼ t23 ¼ 0 ð15Þ
The lateral stresses t22 and t33 are not insignificant as would be the case for an approximately uniaxial stress

state. With hindsight a better solution can be obtained by allowing the cross-section to dilate. Let the new

position vector bRR be:
bRR ¼ ðxþ uðxÞÞi1 þ zð1� lu;xÞi2 þ yð1� lu;xÞi3 ð16Þ

The tangent and reciprocal base vectors in the deformed state will now be (note, it is assumed that u;xx ¼ 0):
ĝg1 ¼ ð1þ u;xÞi1 ĝg2 ¼ ð1� lu;xÞi2 ĝg3 ¼ ð1� lu;xÞi3

ĝg1 ¼ 1

1þ u;x
i1 ĝg2 ¼ 1

1� lu;x
i2 ĝg3 ¼ 1

1� lu;x
i3

ð17Þ
The new invariants are therefore:
Ik ¼ ð1þ u;xÞ2 þ 2ð1� lu;xÞ2 J ¼ ð1þ u;xÞð1� lu;xÞ2 ð18Þ

The strain energy density is then given by:
dU ffi 1

2
Eðu;xÞ2 þOð½u;x�3ÞdV ffi 1

2
EAðu;xÞ2 dx ð19Þ
The conventional elasticity expression for uniaxial tension/compression results. The Lagrangian stresses to
the order of Oð½u;x�2Þ are therefore:
t11 ffi Eu;x t22 ffi 0 t33 ffi 0 t12 ¼ t13 ¼ t23 ¼ 0 ð20Þ

Hence, Eq. (16) provides a better approximation for the displacements under uniaxial tension and com-

pression. The displacements described in Eq. (10) still provide an adequate solution for the longitudinal

stresses if we are prepared to assume that stresses are uniaxial and replace K þ 2G by E in Eq. (7). It should

be noted, however, that stability analysis of elastic members requires solutions to higher order. One

therefore needs to be consistent in the level of approximation made.
4. Bending of a straight prismatic beam including shear and axial deformations––Timoshenko beam

This example is of the analysis of a beam under bending and axial deformation. The simplest approach is

to treat the beam as a two-dimensional problem. Under deformation it is assumed that the cross-sectional

shape remains unchanged (undergoes no strain within the cross-section plane) and therefore k2 ¼ 1, k3 ¼ 1

and ĝg23 ¼ 0. As in the example of uniaxial deformation, equilibrium will therefore only be approximately
satisfied as the maintenance of the cross-sectional shape implies the presences of lateral stresses to contra

the effects of volume dilation.
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The longitudinal axis of centroids of the undeformed beam is taken as the x- or 1-axis. The axis per-
pendicular to the x-axis is taken as the y- or 2-axis. The deflected shape of the beam will be characterized by

the deflection of the centroidial axis. The initial axis system chosen is a Cartesian rectangular system. The

material lines within the beam are assumed to be parallel to the Cartesian coordinate system. Hence the
tangent base vectors at any point within the undeformed beam are g1 ¼ i1 and g2 ¼ i2.

Let the displacements in the x and y directions of any point within the beam be denoted by u1 and u2,
respectively. The position vector bRR for a particle that initially had coordinates x, y will be:
bRR ¼ ðxþ u1Þi1 þ ðy þ u2Þi2 ð21Þ
The tangent base vectors in the deformed state will be therefore be
ĝg1 ¼
obRR
ox

¼ ð1þ u1;1Þi1 þ u2;1i2 ĝg2 ¼
obRR
oy

¼ u1;2i1 þ ð1þ u2;2Þi2 ð22Þ
The angle at the centroid between the tangent base vector ĝg1 in the deformed state and the undeformed

longitudinal axis, is denoted by b. This angle is split into a bending component h and a shear component u
so that b ¼ h þ u. It is assumed that the plane of the cross-section does not remain perpendicular to the

centroidal axis during deformation. In the deformed state, the angle between the plane of the cross-section
and the centroidal longitudinal axis is given by h. From Eq. (22) we can write at the centroidal axis (y ¼ 0):
ĝg1 � g1 ¼ k10 cos b0 ¼ 1þ u1;1 ð23Þ

ĝg1 � g2 ¼ k10 cos
p
2

�
� b0

�
¼ u2;1 ð24Þ

ĝg2 � g1 ¼ cos
p
2

�
þ h
�
¼ � sin h ¼ u1;2 ð25Þ

ĝg2 � g2 ¼ cos h ¼ 1þ u2;2 ð26Þ
where k10 is the stretch of the centroidal longitudinal axis and b0 is defined at the centroid. Eqs. (23)–(26)

lead to the following equations relating the bending angle to the displacements at the centroidal axis

(y ¼ 0):
k10 sin b0 ¼ u2;1 k10 cos b0 ¼ 1þ u1;1 tan b0 ¼
u2;1

1þ u1;1
ð27Þ
Integrating Eqs. (25) and (26) leads to expressions for the displacement functions, that is:
u1 ¼ uoðxÞ � y sin h ð28Þ

u2 ¼ vðxÞ � yð1� cos hÞ ð29Þ

The displacement functions are the same as for pure bending. Substituting Eqs. (28) and (29) into Eqs. (27)

leads to:
k10 cos b0 ¼ 1þ u0;x k10 sin b0 ¼ v;x ð30Þ

and
tan b0 ¼
v;x

1þ u0;x

db0

dx
¼ dh
dx

þ du0

dx
¼ ðv;xx½1þ u0;x� � v;xu0;xxÞ

ð1þ u0;xÞ2 þ v2;x
ð31Þ
Substituting Eqs. (28) and (29) into the equations for the tangent and reciprocal base vectors in the
deformed state and using Eq. (30) we get:
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ĝg1 ¼ k1 cos bi1 þ k1 sin bi2 ¼ ð1þ u0;x � yh;x cos hÞi1 þ ðv;x � yh;x sin hÞi2
¼ ½k10 cos b0 � yh;x cos h�i1 þ ½k10 sin b0 � yh;x sin h�i2 ð32Þ
ĝg2 ¼ � sin hi1 þ cos hi2 ð33Þ
J ĝg1 ¼ cos hi1 þ sin hi2 ð34Þ
J ĝg2 ¼ �k1 sin bi1 þ k1 cos bi2 ¼ �ðv;x � yh;x sin hÞi1 þ ð1þ u0;x � yh;x cos hÞi2
¼ �½k10 sin b0 � yh;x sin h�i1 þ ½k10 cos b0 � yh;x cos h�i2 ð35Þ
The longitudinal tangent base vector ĝg1 is a function of the distance from the centroidal axis while the

tangent base vector ĝg2 remains a function of the original x coordinate only. As in the case of pure bending,

the material line that was originally perpendicular to the straight longitudinal centroidal axis remains a

straight line. The angle of inclination is the bending angle h.
The shear deformation is characterized by the scalar product of the tangent base vectors ĝg1 and ĝg2 in the

deformed state, hence using Eqs. (32) and (33):
ĝg1 � ĝg2 ¼ k1 sinu ¼ �ð1þ u0;xÞ sin h þ v;x cos h ¼ k10 sinu0 ð36Þ
The scalar product between the tangent base vectors is constant through the depth of the cross-section. The

shear angle is however, not constant through the depth. The stretch k1 can be derived from Eq. (32) and is:
ĝg1 � ĝg1 ¼ ðk1Þ2 ¼ ðk10 cosu0 � yh;xÞ2 þ ðk10 sinu0Þ
2 ¼ ðk10Þ2 � 2k10 cosu0yh;x þ y2ðh;xÞ2 ð37Þ
where
k10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0;xÞ2 þ v2;x

q
ð38Þ
The components of the stretch normal and tangential to the plane of the cross-section can be derived from

Eqs. (32) and (33), and are given by the simple expressions:
kn1 ¼ k1 cosu ¼ k10 cosu0 � yh;x ks1 ¼ k1 sinu ¼ k10 sinu0 ð39Þ
The invariants are therefore
Ik ¼ ðk1Þ2 þ 2 ¼ ðk10 cosu0 � yh;xÞ2 þ ðk10 sinu0Þ
2 þ 2

J ¼ k1 cosu ¼ k10 cosu0 � yh;x

ð40Þ
Using Eqs. (8) and (40), the strain energy density is approximated by:
dU ffi 1

2
E
Aðk10 cosu0 � 1Þ2 þ 1

2
E
I

dh
dx

� 	2
þ 1

2
GAðk10 sinu0Þ

2
dx ð41Þ
where A is the cross-section area and I is the second moment of area. This expression is similar to that

derived by Simo et al. (1984a) (Eq. (25), p. 310).
The internal beam action, N the axial force normal to the cross-section, Q the shear force tangential to

the cross-section and M the bending moment are obtained from the above as:
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odU
o dh
dx

ffi E
I
dh
dx

¼ M

odU
ok10 cosu0

ffi E
Aðk10 cosu0 � 1Þ ¼ N

odU
ok10 sinu0

¼ GAk10 sinu0 ¼ Q

ð42Þ
Eq. (39) is substituted into the constitutive relationships for the Reissner–Lagrangian stresses given in

Eq. (9). Thus
snormalR ffi E
 k10 cosu0



� 1� y

dh
dx

�
sshearR ¼ Gk10 sinu0

ð43Þ
5. Buckling of an initially straight prismatic column with shear and axial deformations

Consider a straight prismatic simply supported column of length L, as depicted in Fig. 4. Compressive

loads P are applied at each end. The Reissner stresses act normal to the cross-section and the shears

tangential to the cross-section hence from equilibrium at a free body in the column such as in Fig. 5, we can

conclude the following:
Z Z
A
snormalR dA ffi E
Aðk10 cosu0 � 1Þ ¼ N ¼ �P cos hZ Z

A
snormalR y dA ffi �E
I

dh
dx


 �
¼ M ¼ PvZ Z

A
snormalR dA ¼ GAk10 sinu0 ¼ Q ¼ P sin h

ð44Þ
The equations above are combined and Eq. (30) is used to derive the following differential equation.
Fig. 4. Simply supported column.



Fig. 5. Free body at the deflected centroidal axis.
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d2h
dx2


 �
¼ � P

E
I
v;x ¼ � P

E
I
k10 sin b0 ¼ �k10 sinu0

P
E
I

cos h � k10 cosu0

P
E
I

sin h

¼ � P
E
A

1

r2
sin h þ P

E
A


 �2
1

r2
cos h sin h 1



� E


G

�
¼ 1

r2
P 
 sin h½P 
 cos hð1� m
Þ � 1� ð45Þ
where r is the radius of gyration and P 
 ¼ P 
=E
A and m
 ¼ E
=G. An estimate of the buckling load can be

derived from this differential equation. The details are contained in Appendix A. The resulting formula for

the buckling load Pcr is:
Pcr
E
A

¼ 1

2ðm
 � 1Þ

(
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2

ðL=rÞ2
ðm
 � 1Þ

s )
ð46Þ
This equation is identical to the second equation derived by Timoshenko and Gere (1963, p. 143) for this

problem. The above equation is also very similar to the equation derived by Haringx, written here as:
Pcr
EA

¼ 1

2m

(
� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2

ðL=rÞ2
m

s )
ð47Þ
where m ¼ E=G.
6. Bending and torsion of a straight three-dimensional prismatic cylindrical beam including shear––

Timoshenko beam

Consider a straight cylindrical prismatic beam. Under bending and torsion deformations it is assumed

that the cross-sectional shape remains unchanged (undergoes no strain within the cross-section plane)
and there is no cross-sectional warping. The initial axis system chosen is a Cartesian rectangular system and



Fig. 6. Tangent base vectors in three-dimensions.
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there is therefore no distinction between covariant and contravariant differentiation of tensor components.

The material lines within the beam are parallel to the Cartesian coordinate system. The longitudinal axis of

centroids of the undeformed beam is taken as the x- or 1-axis. The cross-sectional centroidal principal axes
are taken as the y- or 2-axis and the z- or 3-axis (refer to Fig. 6). Therefore k2 and k3 ¼ 1 and ĝg2 � ĝg3 ¼ 0. As

with the previous two-dimensional beam problem, equilibrium will only be approximately satisfied because

the cross-sectional shape is constrained.
The deflected shape of the beam will be characterized by the deflection of the centroidal axis. The tangent

base vectors at any point within the undeformed beam are:
g1 ¼ i1 g2 ¼ i2 g3 ¼ i3 ð48Þ
Let the displacements in the x, y and z directions of any point within the beam be denoted by u1, u2 and u3,
respectively. The position vector bRR for a particle that initially had coordinates x, y and z will be:
bRR ¼ ðxþ u1Þi1 þ ðy þ u2Þi2 þ ðzþ u3Þi3 ð49Þ
The tangent base vectors in the deformed state are therefore defined by
ĝg1 ¼
obRR
ox

¼ ð1þ u1;1Þi1 þ u2;1i2 þ u3;1i3 ¼ k1ðl1i1 þ m1i2 þ n1i3Þ

ĝg2 ¼
obRR
oy

¼ u1;2i1 þ ð1þ u2;2Þi2 þ u3;2i3 ¼ l2i1 þ m2i2 þ n2i3

ĝg3 ¼
obRR
oz

¼ u1;3i1 þ u2;3i2 þ ð1þ u3;3Þi3 ¼ l3i1 þ m3i2 þ n3i3

ð50Þ
where l1, l2, l3, m1, m2, m3, n1, n2 and n3 are direction cosines. The angle at the centroid between the tangent
base vector ĝg1 in the deformed state and the undeformed longitudinal axis g1, is denoted by b. This angle is
assumed to consist of a bending component h and a shear component u so that b ¼ h þ u. It is also
assumed that the plane of the cross-section does not remain perpendicular to the centroidal axis during
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deformation. The unit normal to the deformed cross-sectional plane (containing ĝg2 and ĝg3) at the centroid is

denoted by n̂n and is defined by
n̂n ¼ l10i1 þ m10i2 þ n10i3 ð51Þ
where l10, m10 and n10 are direction cosines. The unit normal n̂n lies in the plane containing ĝg1 and g1 as
shown in Fig. 6 and satisfies the following:
n̂n1 � g1 ¼ l10 ¼ cos h

n̂n1 � g2 ¼ m10 ¼ sin h sinw

n̂n1 � g3 ¼ n10 ¼ sin h cosw

ð52Þ
where w is angle between the plane containing ĝg1 and g1 and the z axis (refer to Fig. 6) and is related to the
tortuosity of the centroidal deformed axis (see Love, 1944). Since ĝg2; ĝg3 and n̂n are all orthogonal we can use

a system of Euler angles h, w and / to define their direction cosines. Hence at the centroidal axis (y and
z ¼ 0), we have the following equations:
ĝg1 � g1 ¼ 1þ u1;1 ¼ k10l1 ¼ k10 cos b0

ĝg1 � g2 ¼ u2;1 ¼ k10m1 ¼ k10 sin b0 sinw

ĝg1 � g3 ¼ u3;1 ¼ k10n1 ¼ k10 sin b0 cosw

ð53Þ
ĝg2 � g1 ¼ u1;2 ¼ l2 ¼ sin h sin/

ĝg2 � g2 ¼ 1þ u2;2 ¼ m2 ¼ cosw cos/ � sinw sin/ cos h

ĝg2 � g3 ¼ u3;2 ¼ n2 ¼ � sinw cos/ � cosw sin/ cos h

ð54Þ
ĝg3 � g1 ¼ u1;3 ¼ l3 ¼ � sin h cos/

ĝg3 � g2 ¼ u2;3 ¼ m3 ¼ cosw sin/ þ sinw cos/ cos h

ĝg3 � g3 ¼ 1þ u3;3 ¼ n3 ¼ � sinw sin/ þ cosw cos/ cos h

ð55Þ
where the angles b0, w and / are taken as functions of x only. Eq. (53) leads to the following
k10 sin b0 sinw ¼ v;x k10 sin b0 cosw ¼ w;x

k10 cos b0 ¼ 1þ u0;x k10 sin b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2;x þ w2

;x

q
k10 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0; xÞ2 þ v2;x þ w2

;x

q ð56Þ
where u0ðxÞ is the axial displacement of the centroidal axis and, vðxÞ and wðxÞ are the displacements of the
centroidal axis in the y and z directions, respectively, and k10 is the stretch of the centroidal axis. Eqs. (56)
lead to the following equations relating the bending angle and tortuosity angle to the displacements at the

centroidal axis (y and z ¼ 0):
w;x

1þ u0;x
¼ tan b0 cosw

v;x
1þ u0;x

¼ tan b0 sinw

v;x
w;x

¼ tanw tan b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

;x þ v2;x
q
1þ u0;x

ð57Þ
The geometric torsion or tortuosity of the centroidal axis is related to the derivative of the angle w with
respect to x, and can be derived from the above equations, that is:
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dw
dx

¼ d

dx
tan�1 v;x

w;x


 �
¼ w;xv;xx � v;xw;xx

w2
;x þ v2;x

ð58Þ
Integrating Eqs. (54) and (55) leads to expressions for the displacement functions, that is:
u1 ¼ u0ðxÞ þ yl2 þ zl3
u2 ¼ vðxÞ � yð1� m2Þ þ zm3

u3 ¼ wðxÞ þ yn2 � zð1� n3Þ
ð59Þ
The curvatures with respect to the unit normal n̂n at the centroid are given by
j ¼ �n̂n;x � ĝg2 ¼
dh
dx

sin/ � dw
dx

sin h cos/ ð60Þ

j0 ¼ n̂n;x � ĝg3 ¼
dh
dx

cos/ þ dw
dx

sin h sin/ ð61Þ
while the torsion at the centroid about the unit normal to the cross-section is defined by
s ¼ ĝg3;x � ĝg2 ¼
d/
dx

þ dw
dx

cos h ð62Þ
Following the procedure in Love (1944), the tangent base vector ĝg1 can now be written in terms of the
curvatures and torsion of the centroidal axis:
ĝg1 ¼ ðk10 cos b0 þ y½l10j � l3s� þ z½l2s � l10j0�Þi1 þ ðk10 sin b0 sinw þ y½m10j � m3s�
þ z½m2s � m10j

0�Þi2 þ ðk10 sin b0 cosw þ y½n10j � n3s� þ z½n2s � n10j0�Þi3 ð63Þ
The shear deformation is characterized by the scalar product of the tangent base ĝg1 with ĝg2 and ĝg3 sepa-

rately, in the deformed state, hence using Eqs. (50), (54), (55) and (63) we have:
ĝg1 � ĝg2 ¼ zs � k10 sin/ sinu0 ĝg1 � ĝg3 ¼ �ys þ k10 cos/ sinu0 ð64Þ
The stretch k1 can be derived from Eq. (63) and is:
ĝg1 � ĝg1 ¼ ðk1Þ2 ¼ ðk10 cosu0 þ yj � zj0Þ2 þ ðzs � k10 sin/ sinu0Þ
2 þ ð�ys þ k10 cos/ sinu0Þ

2 ð65Þ
consisting of the square of the normal component of the longitudinal stretch and the two components

associated with shear. The invariants are therefore:
Ik ¼ ðk1Þ2 þ 2 ¼ ðk10 cosu0 þ yj � zj0Þ2

þ ðzs � k10 sin/ sinu0Þ
2 þ ð�ys þ k10 cos/ sinu0Þ

2 þ 2

J ¼ k1ð1� cos2 /̂/12 � cos2 /̂/13Þ
1=2 ¼ k10 cosu þ yj � zj0

ð66Þ
For small strain, the strain energy density becomes
dU ffi 1

2
E
Aðk10 cosu0 � 1Þ2 þ 1

2
GA ½k10 sinu0�

2



þ Ipo

A
s2
�
þ 1

2
E
ðIzzj2 þ Iyy ½j0�2Þdx

þ
Z
A
Oð½k10 cosu0 þ yj � zj0 � 1�3ÞdAdx ð67Þ
where Izz and Iyy are the second moment of areas about the y and z axes, respectively and Ipo is the polar
second moment of area. The internal beam actions obtained from Eq. (67) are therefore:
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odU
oj

ffi E
Izzj ¼ M3

odU
oj0 ffi E
Iyyj0 ¼ M2

odU
os

¼ GIpos ¼ Mt

odU
ok10 cosu0

ffi E
Aðk10 cosu0 � 1Þ ¼ N

odU
ok10 sinu0

¼ GAk10 sinu0 ¼ Q

ð68Þ
In the above equations, M3 and M2 are the resultant bending moments about the deformed ĝg3 and ĝg2 axes,
respectively; Mt is the twisting moment about the unit normal to the cross-section; N is the axial force

normal to the deformed cross-sectional plane in the direction n̂n and, Q is the shear force resultant which acts

in the plane of ĝg1 and g1 and perpendicular to n̂n (refer to Fig. 6), defined by the unit vector t̂t given by
t̂t ¼ � sin hi1 þ cos h sinwi2 þ cos h coswi3 ð69Þ
The Reissner–Lagrangian stress representation is convenient for describing the stresses on the cross-section

and are:
snormalR ffi E
ðk10 cosu0 þ yj � zj0 � 1Þ
s12R ¼ Gðzs � k10 sin/ sinu0Þ
s13R ¼ Gð�ys þ k10 cos/ sinu0Þ

ð70Þ
7. Uniform torsion of a cylinder and the Wagner effect

The next example is that of a cylinder under uniform torsion and is examined because the results differ
from conventional theory which shows a second-order axial shortening of the cylinder under pure torsion

(see Timoshenko, 1953, p. 402). This second-order axial shortening is important in the derivation of tor-

sional and flexural–torsional buckling and is associated with the Wagner effect (see Attard, 1986; Alwis and

Wang, 1996). Although polar coordinates can be used, Cartesian coordinates will be used to simplify the

analysis. The longitudinal axis of the cylinder is denoted by x while the other two principal axes are denoted
by y and z. Consider a point within the cylinder which initially had coordinates y and z. The cylinder is
twisted through an angle / about the longitudinal axis and with hindsight the vector representing the

deformed point is chosen as:
bRR ¼ ½xþ uðxÞ�i1 þ �zzð1� lu;xÞi2 þ �yyð1� lu;xÞi3 ð71Þ
where �zz and �yy are the rotated coordinates defined by:
�zz ¼ ðz cos/ � y sin/Þ �yy ¼ ðz sin/ þ y cos/Þ ð72Þ
Points within any cross-section will rotate about the longitudinal axis and suffer a longitudinal displace-

ment only if uðxÞ is non-zero. Only uniform axial displacement and uniform torsion is considered here
(u;xx ¼ 0 and /;xx ¼ 0). The tangent and reciprocal base vectors in the deformed state will therefore be
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ĝg1 ¼
obRR
ox

¼ ð1þ u;xÞi1 � �yyð1� lu;xÞ/;xi2 þ �zzð1� lu;xÞ/;xi3

ĝg2 ¼
obRR
oz

¼ ðcos/i2 þ sin/i3Þð1� lu;xÞ

ĝg3 ¼
obRR
oy

¼ ð� sin/i2 þ cos/i3Þð1� lu;xÞ

ð73Þ
ĝg1 ¼ 1

ð1þ u;xÞ
i1

ĝg2 ¼
y/;x

ð1þ u;xÞ
i1 þ

ðcos/i2 þ sin/i3Þ
ð1� lu;xÞ

ĝg3 ¼
�z/;x

ð1þ u;xÞ
i1 þ

ð� sin/i2 þ cos/i3Þ
ð1� lu;xÞ

ð74Þ
giving rise to the following results:
ĝg1 � ĝg1 ¼ ðk1Þ2 ¼ ð1þ u;xÞ2 þ r2ð/;xÞ
2ð1� lu;xÞ2

ĝg2 � ĝg2 ¼ ĝg3 � ĝg3 ¼ ð1� lu;xÞ2

ĝg2 � ĝg3 ¼ 0 ) /̂/23 ¼
p
2

ĝg1 � ĝg2 ¼ k1 cos /̂/12 ¼ �y/;xð1� lu;xÞ2

ĝg1 � ĝg3 ¼ k1 cos /̂/13 ¼ z/;xð1� lu;xÞ2

ð75Þ
where r2 ¼ z2 þ y2. The invariants are therefore:
Ik ¼ ð1þ u;xÞ2 þ r2ð/;xÞ
2ð1� lu;xÞ2 þ 2ð1� lu;xÞ2

J ¼ k1ð1� cos2 /̂/12 � cos2 /̂/13Þ
1=2 ¼ ð1þ u;xÞð1� lu;xÞ2

ð76Þ
The normal and shear components of the longitudinal stretch are therefore:
kn1 ¼ 1þ u;x ks1 ¼ r/;xð1� lu;xÞ ð77Þ
The normal component of the longitudinal stretch is unaffected by the twist as is also the invariant J . The
strain energy density based on Eq. (7) is then:
dU ffi 1
2
GIpoð1� lu;xÞ2ð/;xÞ

2 þ 1
2
EAðu;xÞ2 þOð½u;x�3Þdx ð78Þ
where Ipo is the polar second moment of area. Based on Eq. (14), the shear stress components t12 and t13

acting in the original z and y directions are:
t12 ¼ �G�yy/;xð1� lu;xÞ t13 ¼ G�zz/;xð1� lu;xÞ ð79Þ
Hence, the twisting moment Mt1 due to St. Venant shear stresses, is then
Mt1 ffi
Z
A
ðt13�zz� t12�yyÞð1� lu;xÞdA ffi GIpo/;xð1� lu;xÞ2 ð80Þ
This agrees with Eq. (78) where the same result can be obtained by noting that the twisting moment is

conjugate to the rate of twist /;x. The stresses normal to the cross-sectional plane of the bar are:
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t11 ffi Gð1þ u1;1 � ĝg1 � g1Þ þ Kĝg1 � g1ðJ � 1Þ þOð½J � 1�2Þ

ffi G 1



þ u;x �

1

1þ u;x

�
þ K

1

1þ u;x
½ð1þ u;xÞð1� lu;xÞ2 � 1� ffi Eu;x þOðu;xÞ2 ð81Þ
The stresses t22 and t33 can be shown to be of second order. The axial force N is then calculated from
N ¼
Z
A
t11 dA ffi EAu;x þOð½u;x�2Þ ð82Þ
If there is no axial force, there is no axial shortening. Many finite strain formulations predict an axial

shortening accompanied with a self-equilibrating normal stress distribution under pure torsion. This is not

predicted here as the component of the stretch k1 normal to the cross-sectional plane is unity under pure

torsion (refer to Eq. (77)) and therefore results in no normal stress. The deformation involved in pure

torsion of a cylinder is essentially that of simple shear which as shown in Attard (2003) produces no normal

stress.
8. Uniform torsion with warping and the Wagner effect

Here we extend the previous example by considering a prismatic bar of general but symmetric cross-

section which under uniform torsion (/;xx ¼ 0) experiences longitudinal warping. It is assumed that the

longitudinal displacement of the previous example is augmented by a warping of the cross-sectional plane

which is proportional to the product of a warping function xðy; zÞ and the rate of change of the twist angle
/;x. The cross-section is twisted about the centroidal longitudinal axis. The vector representing the position

of a point ðx; y; zÞ in the deformed state is then given by:
bRR ¼ ½xþ uðxÞ þ x/;x�i1 þ �zzð1� lu;xÞi2 þ �yyð1� lu;xÞi3 ð83Þ
with the displacements defined by
u1 ¼ uðxÞ þ x/;x u2 ¼ �zzð1� lu;xÞ � z u3 ¼ �yyð1� lu;xÞ � y ð84Þ
The associated covariant tangent base vectors in the deformed state are:
ĝg1 ¼
obRR
ox

¼ ð1þ u;xÞi1 � �yy/;xð1� lu;xÞi2 þ �zz/;xð1� lu;xÞi3

ĝg2 ¼
obRR
oz

¼ x;z/;xi1 þ ðcos/i2 þ sin/i3Þð1� lu;xÞ

ĝg3 ¼
obRR
oy

¼ x;y/;xi1 þ ð� sin/i2 þ cos/i3Þð1� lu;xÞ

ð85Þ
and the contravariant reciprocal base vectors given by:
J ĝg1 ¼ ½ð1� lu;xÞi1 þ x;y sin/
�

� x;z cos/
�
/;xi2 � ðx;y cos/ þ x;z sin/Þ/;xi3�ð1� lu;xÞ

J ĝg2 ¼ ½y/;xð1� lu;xÞi1 þ ðcos/½1þ u;x� � �zzx;y/
2
;xÞi2 þ ðsin/½1þ u;x� � �yyx;y/

2
;xÞi3�ð1� lu;xÞ

J ĝg3 ¼ ½�z/;xð1� lu;xÞi1 þ ð� sin/½1þ u;x� þ �zzx;z/
2
;xÞi2 þ ðcos/½1þ u;x� þ �yyx;z/

2
;xÞi3�ð1� lu;xÞ

ð86Þ
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The dot products of the covariant tangent base vectors are therefore:
ĝg1 � ĝg1 ¼ ðk1Þ2 ¼ ð1þ u;xÞ2 þ r2ð/;xÞ
2ð1� lu;xÞ2

ĝg2 � ĝg2 ¼ ðk2Þ2 ¼ ð1� lu;xÞ2 þ ðx;z/;xÞ
2

ĝg3 � ĝg3 ¼ ðk3Þ2 ¼ ð1� lu;xÞ2 þ ðx;y/;xÞ
2

ĝg2 � ĝg3 ¼ k2k3 cos /̂/23 ¼ x;zx;yð/;xÞ
2

ĝg1 � ĝg2 ¼ k1k2 cos /̂/12 ¼ ð1þ u;xÞx;z/;x � y/;xð1� lu;xÞ2

ĝg1 � ĝg3 ¼ k1k3 cos /̂/13 ¼ ð1þ u;xÞx;y/;x þ z/;xð1� lu;xÞ2

ð87Þ
The first and third invariants can now be derived and are given by:
Ik ¼ ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2 ¼ ð1þ u;xÞ2 þ 2ð1� lu;xÞ2 þ ðr2ð1� lu;xÞ2 þ x2
;z þ x2

;yÞ/
2
;x ð88Þ

J ¼ k1k2k3ð1þ 2 cos /̂/12 cos /̂/13 cos /̂/23 � cos2 /̂/12 � cos2 /̂/13 � cos2 /̂/23Þ
1=2

¼ ð1þ u;x þ �xx/2
;xÞð1� lu;xÞ2 ð89Þ
where �xx ¼ yx;z � zx;y . Because the plane of the cross-section warps, it is convenient to use the first

Piola–Kirchhoff stress tensor to describe stresses. Since the initial coordinates are Cartesian, the first

Piola–Kirchhoff stress tensor will be equal to it�s physical counterpart. Using Eq. (14), the shear stress

components t12 and t13 acting in the original z and y directions are:
t12 ffi Gðu2;1 � ĝg1 � g2Þ þ Kĝg1 � g2ðJ � 1Þ þOð½J � 1�2Þ

¼ G/;xð1� lu;xÞð��yy � 1

J
½�x;z cos/ þ x;y sin/�Þ

þ K/;xð1� lu;xÞð�x;z cos/ þ x;y sin/Þ 1



� 1

J

�
t13 ffi Gðu3;1 � ĝg1 � g3Þ þ Kĝg1 � g3ðJ � 1Þ þOð½J � 1�2Þ

¼ G/;xð1� lu;xÞ �zz



þ 1

J
½x;z sin/ þ x;y cos/�

�
� K/;xð1� lu;xÞðx;z sin/ þ x;y cos/Þ 1



� 1

J

�
ð90Þ
These stresses do not include any shear stresses resulting from restrained warping as the displacement

functions defined in Eq. (84) do not include this effect. Because there must be no resultant shear forces on

the cross-section then
R
A t

12 dA ¼ 0 and
R
A t

13 dA ¼ 0 and several equations involving the warping function

must be satisfied, some of which are
Z
A

x;z dA ¼ 0

Z
A

x;y dA ¼ 0

Z
A

xx;z dA ¼ 0

Z
A

xx;y dA ¼ 0Z
A
�xxx;z dA ¼ 0

Z
A
�xxx;y dA ¼ 0

Z
A
�xxzdA ¼ 0

Z
A
�xxy dA ¼ 0

ð91Þ
The twisting moment Mt1 due to St. Venant shear stresses, can now be derived and is
Mt1 ffi
Z

ðt13�zz� t12�yyÞð1� lu;xÞdA ffi ½GJt þ E

I �xxu;x�/;xð1� lu;xÞ2 ð92Þ

A
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where E

 ¼ Gþ K and
I �xx ¼
Z
A

�xxdA Jt ¼
Z
A
ðr2 � �xxÞdA ¼ Ipo � I �xx ð93Þ
and Jt is the St. Venant torsion constant. A different formula for the torsion constant is derived if one
inspects the strain energy expression and is:
Jt ¼
Z
A
½y � x;z�2 þ ½zþ x;y �2 dA ð94Þ
Eqs. (93) and (94) imply:
I �xx ¼
Z
A

x2
;z þ x2

;y dA ð95Þ
The twisting moment expression has a coupling term of second-order involving the axial displacement. This
implies that the torsional stiffness is affected by the presence of axial deformation. The stresses aligned with

the undeformed longitudinal axis of the bar are:
t11 ffi Gð1þ u1;1 � ĝg1 � g1Þ þ Kĝg1 � g1ðJ � 1Þ þOð½J � 1�2Þ

¼ G 1

 
þ u;x �

ð1� lu;xÞ2

J

!
þ K

ð1� lu;xÞ2

J
ðJ � 1Þ ð96Þ
The axial force expression is then to first-order terms in u;x and second-order terms in /;x:
N ¼
Z
A
t11 dA ffi EAu;x þ E

I �xx/2

;x ð97Þ
With the presence of warping has come a coupling between the axial displacement of the centroidal axis and

the twist rate. If there is no axial force then there could be an axial displacement under torsion if the section
warps. When there is uniform torsion without any axial force Eq. (97) gives for the axial shortening:
u;x ffi � 1

2

1

ð1þ lÞð1� 2lÞ
I �xx
A

/2
;x ¼ � 1

2

1

ð1þ lÞð1� 2lÞ
Ipo � Jt

A
/2

;x ð98Þ
Conventional beam theory gives for the second-order axial shortening associated with the Wagner effect as

u;x ¼ �ð1=2ÞðIpo=AÞ/2
;x (see Attard, 1986; Alwis and Wang, 1996), which is independent of the amount of

warping. For comparison, consider an elliptic cross-section as shown in Fig. 7. The torsion constant for an

elliptic cross-section is derived in Timoshenko and Goodier (1970) and is given in Fig. 7. Fig. 8 shows a

comparison of the axial shortening calculated from Eq. (98) for various Poisson�s ratio and that using the
conventional Wagner expression as a function of the dimension ratio c=d. The shortening factor is the ratio
of Eq. (98) to the axial shortening calculated using u;x ¼ �ð1=2ÞðIpo=AÞ/2

;x. It is seen that the axial short-

ening predicted by Eq. (98) is within one or two times that predicted by the Wagner expression for large c=d
ratios and for materials with Poisson�s ratio less than 0.3. Since the axial shortening under pure torsion is of
second-order smallness it would be difficult to discern which theory is correct except perhaps if one was able

to test a cylinder under pure torsion conditions for which Eq. (98) predicts no axial shortening. When a

cross-section is thin-walled and open, Jt � Ipo and Eq. (98) differs from conventional theory only by the

ratio 1=ð1þ lÞð1� 2lÞ. Of course one must also keep in mind that the derivation so far has been
approximate and that equilibrium in the lateral directions has not been satisfied because t22 and t33 are of
the order ð/;xÞ

2
.



Fig. 7. Elliptic cross-section.

Fig. 8. Axial shortening factor for elliptic cross-section.
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9. Conclusions

An endeavour has been made to review what is appropriate for the nonlinear analysis of beams. By

postulating a strain energy density for an isotropic hyperelastic Hookean material, the constitutive rela-

tionships for the physical Lagrangian stresses on a beam cross-section were derived. The stress normal to

the deformed surface is a function of the normal component of the longitudinal stretch while the shear is a

function of the shear component of longitudinal stretch.
The buckling formula for a straight prismatic column including shear and axial deformations derived

agreed with Haringx�s formula. The problem of a straight prismatic three-dimensional Timoshenko-type

beam with no warping was examined and elastica-type equations were derived. The example of pure torsion
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of a cylinder was also examined as the proposed formulation predicted no second-order axial shortening

under pure torsion. This differs from conventional finite strain predictions where the axial shortening due to

the Wagner effect is evident. When warping was included under pure torsion second-order axial shortening

was predicted. A new formula for axial shortening under pure torsion was presented.
The last point that needs to be made is that although the differences between the formulas of Engesser

and Haringx are negligible if the shear modulus is much greater than the initial axial stress, their differing

approaches can lead to different nonlinear terms in other applications in structural analysis. Many stability

analyses which involve second-order terms are based on a Hookean constitutive relationship between

Green�s strain tensor and the second Piola–Kirchhoff stress tensor. This approach has been placed into

doubt.
Appendix A

The differential equation derived in Eq. (45) is used to estimate the buckling load for an initially straight

prismatic column. The differential equation quoted in Eq. (45) is transformed by noting the following:
d2h
dx2
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¼ 1

r2
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 sin h½P 
 cos hð1� m
Þ � 1�

dh
dx

d2h
dx2


 �
¼ 1

r2
ðP 
Þ2ð1� m
Þ sin h cos h

dh
dx

� 1

r2
P 
 sin h

dh
dx

)
dh
dx


 �2

¼ 1

r2
ðP 
Þ2ð1� m
Þ sin2 h � 1

r2
4P 
 sin2

h
2
þ c

ðA:1Þ
with c being a constant of integration. The boundary condition at the left support is at x ¼ 0, h ¼ h0 and
dh=dx ¼ 0 and therefore:
c ¼ � 1

r2
ðP 
Þ2ð1� m
Þ sin2 h0 þ

1

r2
4P 
 sin2

h0
2

ðA:2Þ
Substituting the equation for c into Eq. (A.1) gives:
dh
dx
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Integrating, we can write the following:
L
r
¼
Z �h0

h0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Here we introduce a new variable / such that
sin
h0
2
sin/ ¼ sin

h
2

ðA:5Þ
with
at x ¼ 0; h ¼ h0 / ¼ p
2

and at x ¼ L; h ¼ �h0 / ¼ � p
2

ðA:6Þ
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and
dh ¼ sin h0=2 cos/

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 h0=2 sin

2 /
q d/ ðA:7Þ
Eq. (A.4) is now transformed using the new variable. We also make the following assumption about the
magnitude of the deflections.
sin2
h0
2
� 1 and sin2

h0
2
sin2 / � 1 ðA:8Þ
Eq. (A.4) then reduces to the following
L
r
¼
Z �p=2

p=2

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP 
Þ2ðm
 � 1Þ þ P 


q ðA:9Þ
Integrating gives
L
r
¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P 
ð1þ P 
ðm
 � 1ÞÞ
p ðA:10Þ
Solutions to Eq. (A.10) do not exist if the denominator is zero. Therefore solutions to the following

quadratic give an estimate of the buckling load.
p2

L
r

� �2 ¼ P 
ð1þ P 
ðm
 � 1ÞÞ ðA:11Þ
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